If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+7d-5=0
a = 1; b = 7; c = -5;
Δ = b2-4ac
Δ = 72-4·1·(-5)
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{69}}{2*1}=\frac{-7-\sqrt{69}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{69}}{2*1}=\frac{-7+\sqrt{69}}{2} $
| 210t/5=41790 | | w(w-8)=-24 | | w(w-8)=240 | | 10(2×+4)=-(-8-9x)+3x | | w(w+80)=240 | | w^2+8w+240=0 | | –8−2f=4−6f | | 4.5p=40=112 | | 30-5x=80 | | 10−2v−7v=–10−5v | | 40=4.5p | | 95=12x-48 | | 10k+2=8+4k | | 9/x=×/4 | | (3x+5)/(4-2x)=5 | | )(3x+5)/(4-2x)=5/ | | 4d−10=2d | | 3(4+2x)-(1-4x)=19 | | 12x-4=8x16 | | 4^(x-2)=0.125 | | 20/x=0.8/0.4 | | (5/3)-(y/4)=16 | | 230=6x+2 | | 3x^2=2.5 | | 34=2(a+9) | | 6(y-8)=-42 | | 12=4(e-7) | | 8(q-6)=-24 | | -21=7(t-9) | | 38=2(f+10) | | 3j+10=j−2 | | 25=10h+ |